Eigenvalue Distribution Conditions for Some Classes of Interval Matrices
نویسندگان
چکیده
منابع مشابه
On Some Special Classes of Sonnenschein Matrices
In this paper we consider the special classes of Sonnenschein matrices, namely the Karamata matrices $K[alpha,beta]=left(a_{n,k}right)$ with the entries [{a_{n,k}} = sumlimits_{v = 0}^k {left( begin{array}{l} n\ v end{array} right){{left( {1 - alpha - beta } right)}^v}{alpha ^{n - v}}left( begin{array}{l} n + k - v - 1\ ,,,,,,,,,,k...
متن کاملLarge Random Matrices: Eigenvalue Distribution
A recursive method is derived to calculate all eigenvalue correlation functions of a random hermitian matrix in the large size limit, and after smoothing of the short scale oscillations. The property that the two-point function is universal, is recovered and the three and four-point functions are given explicitly. One observes that higher order correlation functions are linear combinations of u...
متن کاملAnalysis of Eigenvalue Bounds for Real Symmetric Interval Matrices
In this paper, we present several verifiable conditions for eigenvalue intervals of real symmetric interval matrices overlapping or not overlapping. To above cases, two new methods with algorithms for computing eigenvalue bounds of real symmetric matrices are developed. We can estimate eigenvalue bounds moving away the assumption that two intervals containing two eigenvalues of real symmetric i...
متن کاملPERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES
We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.
متن کاملAsymptotic eigenvalue distribution of large Toeplitz matrices
We study the asymptotic eigenvalue distribution of Toeplitz matrices generated by a singular symbol. It has been conjectured by Widom that, for a generic symbol, the eigenvalues converge to the image of the symbol. In this paper we ask how the eigenvalues converge to the image. For a given Toeplitz matrix Tn(a) of size n, we take the standard approach of looking at det(ζ − Tn(a)), of which the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 1993
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.29.623